

Combining cell microdissection ...

... with laser ablation electrospray ionization (LAESI) mass spectrometry enables the metabolic profiling of subcellular compartments, as shown by A. Vertes and co-workers in their Communication on page 10386 ff. The use of LAESI mass spectrometry allowed the dissected cell to be studied in its natural tissue-embedded state. Large metabolite gradients between the nucleus and the cytoplasm were revealed and over 30 metabolites were detected in a large cell compartment, for example the nucleus.

Analytical Methods

DOI: 10.1002/anie.201205436

Observation of Subcellular Metabolite Gradients in Single Cells by Laser Ablation Electrospray Ionization Mass Spectrometry**

Jessica A. Stolee, Bindesh Shrestha, Getachew Mengistu, and Akos Vertes*

In recent years an increasing number of methods have been exploited for the proteomic^[1-4] and metabolomic^[5-8] analysis of single cells and have provided new insight into cellular subtypes. Local analysis on a subcellular level, however, requires new approaches. Heterogeneity of metabolite distributions within a cell is attributed to functional organization, compartmentalization into organelles, macromolecular crowding, and metabolite channeling as a result of the colocalization of enzymes.^[9,10] This heterogeneity results in metabolite gradients within a cell and compartmentalization of metabolites in particular organelles.^[11] The intracellular production, reaction, and redistribution of metabolites do not always follow the kinetics established in vitro at low concentrations.^[12] Subcellular trafficking between compartments often relies on active transport facilitated by transporter proteins.^[13,14] For example, secondary metabolites can accumulate in the vacuole by the help of ABC transporters.^[15-17] Determining the subcellular distributions of metabolites is challenging because of their high diffusion rates and rapid turnover.

Most techniques for the subcellular analysis of eukaryotic cells rely on the isolation of organelles by nonaqueous fractionation and require extensive sample preparation prior to chemical analysis.^[18] By using tagging or labeling techniques, the distribution of some preselected metabolites can be followed by fluorescence resonance energy transfer.^[19] More recently, cell-membrane lipid distributions have been analyzed by secondary ion mass spectrometry (SIMS)^[20,21] and selected metabolite levels have been determined in the cytoplasm, cytosolic lipid droplets, vacuole, granule, and nucleus by nano-electrospray ionization mass spectrometry.^[22–25] There are, however, few label-free multispecies methods that capture the spatial localization of diverse metabolites within a cell.

Femtosecond laser pulses have been used for disrupting and dissecting subcellular organelles, such as mitochondria and nuclei, in living mammalian cells.^[26–28] This nanosurgery technique, however, is typically performed without opening

 [*] J. A. Stolee, Dr. B. Shrestha, G. Mengistu, Prof. A. Vertes Department of Chemistry, The George Washington University Washington, DC 20052 (USA)
 E-mail: vertes@gwu.edu

Homepage: http://www.gwu.edu/~vertes

- [**] Financial support from the U.S. National Science Foundation (Grant CHE-1152302), and the U.S. Department of Energy Grant DEFG02-01ER15129) is acknowledged. Infrared Fiber systems, Silver Spring, MD, generously provided the GeO₂-based glass fibers.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201205436.

the cell, therefore the resulting ablation products are not available for analysis.^[29-31] In laser ablation electrospray ionization (LAESI) of biological samples, a mid-infrared laser generates a plume in the surrounding environment by bursting the cells open. The ejected material is ionized by an electrospray and analyzed by a mass spectrometer.^[32-35] The ablation and analysis of metabolites in single cells has been achieved by delivering the mid-IR laser pulses with an etched optical fiber for LAESI analysis.^[8,36,37] Herein, we report the in situ chemical analysis of metabolites localized in subcellular compartments by the combination of microdissection and LAESI-MS. We demonstrate the direct multispecies molecular analysis of subcellular compartments by this ambient ionization method. Large metabolite gradients between the cytoplasm and nucleus of Allium cepa epidermal cells are observed using this novel technique.

The schematic in Figure 1 shows the essential features of the experimental setup labeled with the critical dimensions. Epidermal cells from the *A. cepa* bulb were used as a model system in the form of an intact monolayer. The cell nuclei were visible without histological staining (see Figure 2a). A cellular monolayer of epidermal tissue was mounted onto a glass slide, and a micromanipulator equipped with a microdissection needle with a tip diameter of approximately 1 μ m was used for the microdissection. The tip was lowered to the cell wall to pierce and cut it along the inner edge, and peel it back to expose the cytoplasm and the organelles. The

Figure 1. Schematic of the subcellular LAESI and microdissection setup. The sample is mounted on an *x*-*y*-*z* translation stage. Microdissection is performed by a sharp tungsten needle (μ tip) followed by mid-IR laser ablation of the subcellular compartment using an etched optical fiber. The mass spectrometer inlet and electrospray emitter (ES) are on the same axis at a distance of $d_2 = 12$ mm. The sample is positioned at h = 15 mm below this axis. The projection of the point of dissection to this axis is at $d_1 = 7$ mm away from the inlet. The polar angles of the microdissection tip and the fiber are $\theta_T = 45-60^\circ$ and $\theta_F = 45-60^\circ$, respectively. The corresponding azimuthal angles are $\theta_{Txz} = 120-135^\circ$ and $\theta_{Fxz} = 45-60^\circ$, respectively.

10386 WILEY

Figure 2. Microscope images of *A. cepa* epidermal cells show: a) the intact cells and the targeted nucleus prior to microdissection in the dotted white circle; b) the microdissection tip as it peels back the cell wall exposing the nucleus; and c) the etched optical fiber tip as it is brought adjacent to the nucleus prior to ablation.

neighboring cells were not disrupted during the microdissection, and the nucleus remained intact (see Figure 2b). Immediately after the microdissection, a germanium oxide based optical fiber with a tip diameter of approximately 15 µm was brought adjacent to the nucleus to deliver mid-IR laser pulses at a wavelength of 2940 nm (Figure 2 c). The laser energy emitted at the fiber tip decayed within a distance comparable to the tip diameter. In aqueous environment this energy is reduced by the strong absorption of the 2940 nm radiation. The microdissection and ablation were visualized from the top with a long-distance microscope to pinpoint the targeted cellular component. A side-view microscope was used to monitor the distance between the cell surface and the needle or the fiber. The ablation products were ionized by charged droplets from an electrospray emitter that was on the same axis as the inlet of a mass spectrometer.

To obtain the spectra corresponding to the entire cell, initially intact epidermal cells were ablated and analyzed (see Figure 3a). Subsequently, microdissection was performed on an epidermal cell to expose the subcellular components. When the cytoplasm away from the nucleus was targeted with the fiber tip, LAESI-MS yielded a feature-rich spectrum (see Figure 3b), with many of the same peaks that were detected for the intact single cell. Mass spectra from the cell cytoplasm contained peaks primarily corresponding to singly protonated molecules, quasimolecular (sodium or potassium adducts) ions, and a few dimers. Tentative peak assignments were based on accurate mass measurements, information found in databases, such as the Plant Metabolic Network database (http://plantcyc.org/), and the related literature, as well as previous experimental results, including tandem MS measurements, from LAESI analysis of A. cepa cells.^[36] See Table S1 in the Supporting Information for the tentative identification of selected peaks. For example, highly abundant hexose, alliin,

Figure 3. Mass spectra obtained from: a) a single intact *A. cepa* epidermal cell; b) the cytoplasm of a microdissected cell; and c) the nucleus of a microdissected cell. Distinct differences can be observed between the spectra of the cytoplasm and the nucleus samples.

and oligosaccharides were among the putatively assigned metabolites detected in the cell cytoplasm.

Selective ablation of the nuclear region was possible because the sharpened tip of the optical fiber was comparable in size to the approximately 20 µm diameter of the cell nucleus. A significant number of peaks, corresponding to over thirty metabolites, were observed in the spectrum obtained from the nucleus (Figure 3c). As a result of the lower volume of material in a nucleus than that of the cytoplasm or a single cell, the mass spectra obtained from it exhibited lower signal intensities. As expected, some common metabolites between the nucleus and cytoplasm were detected because some crosscontamination by the cytoplasm surrounding the nucleus is inevitable. However, the relative intensities of metabolites varied. For example, the peak at m/z 219 (potassium adduct of hexose) was one of the strongest peaks in the spectra obtained from the cytoplasm and, in most cases, had a relative intensity of less than 40% in spectra from the nucleus. Comparisons between the normalized intensities of ions in the nucleus and cytoplasm spectra can be found in Figure S1 in the Supporting Information. The ratios of the peak intensities between the nucleus and cytoplasm spectra are also noted in Table S1.

To identify metabolites with strong variance between the nucleus and the cytoplasm, multivariate statistical analysis, in particular orthogonal projections to latent structures discriminant analysis (OPLS-DA), was performed on the mass spectra. This method enabled us to separate predictive components, that is, those responsible for the differences between the two organelles, from nonpredictive variations, that is, those describing the differences between one nucleus

Figure 4. Metabolites that account for most of the variance in the spectra between the cytoplasm and the nucleus are found by the S plot. Peaks with high covariance are correlated either to the cytoplasm (top right) or to the nucleus (bottom left). See Table S2 in the Supporting Information for the putative identification of these metabolites.

and another. The resulting S plot, shown in Figure 4, highlights the metabolites with high correlation and covariance. For example, metabolites that are more specific to the cytoplasm, such as hexose (m/z 203 and 219) and alliin (m/z178), are in upper right corner, whereas those that are more characteristic of the nucleus, such as arginine (m/z 175) and glutamine (m/z 147) are in the lower left corner. The points located near the center represent metabolites that are not statistically different in the two regions. The putative assignments of the statistically different metabolites (labeled with their m/z values) are listed in Table S2 in the Supporting Information.

These results demonstrate that hexose and some of the secondary metabolites, for example, alliin, primarily accumulate in the cytoplasm. Indeed, hexose is known to be more abundant in the vacuoles, and it has been suggested that this is the result of an active uptake mechanism.^[38,39] In contrast, some amino acids were more readily detected in the nuclei. Although there have been very few studies on the localization of metabolites in plant nuclei, other small metabolites, such as flavonoids, have been found to be localized in them.^[40,41] Furthermore, the enzyme involved in the metabolism of arginine, that is, arginine decarboxylase, has been found to be localized to the nuclei of nonphotosynthetic tissues; this finding may suggest the presence of arginine in the studied nuclei.^[42] As the compartmentalization of metabolites in the nucleus is relatively unexplored, questions remain as to whether these metabolites are locally produced, consumed, or actively transported to them.

To validate our findings on the large metabolite gradients between the nucleus and the cytoplasm with independent methods, additional experiments were performed. A cationic dye, toluidine blue, with an affinity to the nucleus was introduced to stain the sample. Optical microscope images confirmed that the dye molecules preferentially localized in the nuclei. In situ analysis of dissected stained cells by LAESI also identified significantly higher abundance of the dye molecules in the nucleus than in the cytoplasm, resulting in an intensity ratio of $I_{\text{nuc/cyt}} = 3.0$. Further confirmation was obtained by separately extracting the nucleus and the cytoplasm from the cells stained by methylene blue using a nanoelectrospray emitter.^[43] Images of a cell before and after the extraction of the nucleus confirm its successful removal with minimal damage to the cell (see Figure S2a and S2b in the Supporting Information). The captured nucleus is clearly visible at the tip of the emitter (see the inset in Figure S2c in the Supporting Information). The mass spectra of the nucleus and cytoplasm samples were obtained by using direct electrospray ionization; in the spectrum of the nucleus sample significantly stronger peaks corresponding to the methylene blue molecular ion are seen (see Figure S2c and the experimental details in the Supporting Information). Indeed, multiple experiments show an intensity ratio of $I_{nuc/}$ $_{\rm evt}$ = 2.5. Thus both microdissection combined with LAESI and organelle extraction followed by electrospray ionization indicate that for staining agents our results are consistent with the optically discernible gradient. It is therefore expected that the abundance differences observed for metabolites also reflect existing gradients.

In summary, we have demonstrated in situ ambient analysis of a large number of metabolites from subcellular regions by performing cell microdissection, selective ablation, and LAESI mass spectrometry. This method provides insight into the distribution of metabolites on a subcellular level with minimal change to the integrity of the compartments. The results show that the metabolic makeup of the nucleus and cytoplasm are significantly different. The often large concentration gradients may result from the compartmentalization of metabolites, metabolic channeling, and the active uptake of metabolites for, for example, energy storage or detoxification. Furthermore, local production or consumption of metabolites may also contribute to the differences in the metabolite composition. Additional studies may shed light on the different mechanisms that result in these metabolite gradients

Although we used relatively large cells, this technique can be extended to explore subcellular heterogeneity in smaller cells. The current analytical challenge lies in the sensitivity of the mass spectrometer. As single cell technologies advance, we expect fast developments in subcellular analysis. Microdissection combined with LAESI mass spectrometry has the potential to address important biological questions arising from subcellular heterogeneity and give insight into the subcellular variations of metabolic pathways affected by diseases and drug delivery.

Received: July 10, 2012 Published online: September 5, 2012

Keywords: analytical methods · electrospray ionization · mass spectrometry · metabolomics · single-cell analysis

 S. C. Bendall, E. F. Simonds, P. Qiu, E. A. D. Amir, P. O. Krutzik, R. Finck, R. V. Bruggner, R. Melamed, A. Trejo, O. I. Ornatsky,

R. S. Balderas, S. K. Plevritis, K. Sachs, D. Pe'er, S. D. Tanner, G. P. Nolan, *Science* **2011**, *332*, 687–696.

- [2] M. L. Kovarik, N. L. Allbritton, *Trends Biotechnol.* 2011, 29, 222–230.
- [3] A. Schmid, H. Kortmann, P. S. Dittrich, L. M. Blank, Curr. Opin. Biotechnol. 2010, 21, 12–20.
- [4] Q. H. Shi, L. D. Qin, W. Wei, F. Geng, R. Fan, Y. S. Shin, D. L. Guo, L. Hood, P. S. Mischel, J. R. Heath, *Proc. Natl. Acad. Sci. USA* 2012, *109*, 419–424.
- [5] M. Heinemann, R. Zenobi, *Curr. Opin. Biotechnol.* **2011**, *22*, 26–31.
- [6] A. Oikawa, K. Saito, Plant J. 2012, 70, 30-38.
- [7] S. S. Rubakhin, E. V. Romanova, P. Nemes, J. V. Sweedler, *Nat. Methods* 2011, *8*, S20–S29.
 [8] D. Charles, *A. M. D. Charles and J. Charles and Charles an*
- [8] B. Shrestha, J. M. Patt, A. Vertes, Anal. Chem. 2011, 83, 2947– 2955.
- [9] J. M. Rohwer, P. W. Postma, B. N. Kholodenko, H. V. Westerhoff, Proc. Natl. Acad. Sci. USA 1998, 95, 10547-10552.
- [10] J. Ovádi, V. Saks, Mol. Cell. Biochem. 2004, 256, 5-12.
- [11] J. Yon-Kahn, G. Hervé, G. Hervé, Molecular and Cellular Enzymology, Springer, Berlin, 2010, pp. 727–739.
- [12] C. K. Choi, J. D. Fowlkes, S. T. Retterer, P. Siuti, S. Iyer, M. J. Doktycz, ACS Nano 2010, 4, 3345–3355.
- [13] M. Maeshima, Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 469–497.
- [14] N. C. Danbolt, Prog. Neurobiol. 2001, 65, 1-105.
- [15] P. J. Verrier, D. Bird, B. Buria, E. Dassa, C. Forestier, M. Geisler, M. Klein, U. Kolukisaoglu, Y. Lee, E. Martinoia, A. Murphy, P. A. Rea, L. Samuels, B. Schulz, E. P. Spalding, K. Yazaki, F. L. Theodoulou, *Trends Plant Sci.* 2008, *13*, 151–159.
- [16] E. Martinoia, M. Klein, M. Geisler, L. Bovet, C. Forestier, U. Kolukisaoglu, B. Muller-Rober, B. Schulz, *Planta* 2002, 214, 345 – 355.
- [17] E. Martinoia, M. Maeshima, H. E. Neuhaus, J. Exp. Bot. 2007, 58, 83-102.
- [18] S. Krueger, P. Giavalisco, L. Krall, M. C. Steinhauser, D. Bussis, B. Usadel, U. I. Flugge, A. R. Fernie, L. Willmitzer, D. Steinhauser, *Plos One* **2011**, *6*, e17806.
- [19] M. Fehr, W. B. Frommer, S. Lalonde, Proc. Natl. Acad. Sci. USA 2002, 99, 9846–9851.
- [20] S. G. Ostrowski, M. E. Kurczy, T. P. Roddy, N. Winograd, A. G. Ewing, Anal. Chem. 2007, 79, 3554–3560.
- [21] S. G. Ostrowski, C. T. Van Bell, N. Winograd, A. G. Ewing, *Science* 2004, 305, 71–73.

- [22] S. Date, H. Mizuno, N. Tsuyama, T. Harada, T. Masujima, Anal. Sci. 2012, 28, 201–203.
- [23] T. Masujima, Anal. Sci. 2009, 25, 953-960.
- [24] H. Mizuno, N. Tsuyama, T. Harada, T. Masujima, J. Mass Spectrom. 2008, 43, 1692–1700.
- [25] P. J. Horn, N. R. Ledbetter, C. N. James, W. D. Hoffman, C. R. Case, G. F. Verbeck, K. D. Chapman, *J. Biol. Chem.* **2011**, 286, 3298–3306.
- [26] T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, K. Itoh, *Opt. Express* 2005, 13, 9869–9880.
- [27] N. Shen, D. Datta, C. Schaffer, P. LeDuc, D. Ingber, E. Mazur, *Mech. Chem. Biosyst.* 2005, 2, 17–25.
- [28] K. Konig, I. Riemann, P. Fischer, K.-J. Halbhuber, Cell. Mol. Biol. 1999, 45, 195–202.
- [29] K. Kuetemeyer, R. Rezgui, H. Lubatschowski, A. Heisterkamp, Biomed. Opt. Express 2010, 1, 587-597.
- [30] P. Ronchi, S. Terjung, R. Pepperkok, *Biol. Chem.* 2012, 393, 235 248.
- [31] A. Vogel, J. Noack, G. Huttman, G. Paltauf, Appl. Phys. B 2005, 81, 1015–1047.
- [32] P. Nemes, A. Vertes, Anal. Chem. 2007, 79, 8098-8106.
- [33] P. Nemes, A. A. Barton, Y. Li, A. Vertes, Anal. Chem. 2008, 80, 4575-4582.
- [34] P. Nemes, A. A. Barton, A. Vertes, Anal. Chem. 2009, 81, 6668– 6675.
- [35] P. Nemes, A. S. Woods, A. Vertes, Anal. Chem. 2010, 82, 982– 988.
- [36] B. Shrestha, A. Vertes, Anal. Chem. 2009, 81, 8265-8271.
- [37] B. Shrestha, P. Nemes, A. Vertes, Appl. Phys. A 2010, 101, 121– 126.
- [38] D. Heineke, K. Wildenberger, U. Sonnewald, L. Willmitzer, H. W. Heldt, *Planta* 1994, 194, 29–33.
- [39] A. Endler, S. Meyer, S. Schelbert, T. Schneider, W. Weschke, S. W. Peters, F. Keller, S. Baginsky, E. Martinoia, U. G. Schmidt, *Plant Physiol.* 2006, 141, 196–207.
- [40] W. Feucht, D. Treutter, J. Polster, *Plant Cell Rep.* 2004, 22, 430–436.
- [41] J. Polster, H. Dithmar, R. Burgemeister, G. Friedemann, W. Feucht, *Physiol. Plant.* 2006, 128, 163–174.
- [42] C. Bortolotti, A. Cordeiro, R. Alcazar, A. Borrell, F. A. Culianez-Macia, A. F. Tiburcio, T. Altabella, *Physiol. Plant.* 2004, 120, 84–92.
- [43] N. Tsuyama, H. Mizuno, E. Tokunaga, T. Masujima, Anal. Sci. 2008, 24, 559-561.

Supporting Information © Wiley-VCH 2012

69451 Weinheim, Germany

Observation of Subcellular Metabolite Gradients in Single Cells by Laser Ablation Electrospray Ionization Mass Spectrometry**

Jessica A. Stolee, Bindesh Shrestha, Getachew Mengistu, and Akos Vertes*

anie_201205436_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents						
S1. Experimental section						
Table S1	Tentative metabolite assignments for selected peaks detected in single Allium					
	cepa cells by LAESI	5				
Figure S1	Comparison of the relative intensities of metabolites detected in the nucleus and					
	cytoplasm of Allium cepa cells	6				
Table S2	Putative assignments of metabolites identified to be primarily located in the					
	cytoplasm or nucleus by microdissection and LAESI analysis	7				
S2. Organelle extraction and electrospray ionization using nanoelectrospray emitters						
Figure S2	a) Microscope image of stained cells before extraction, b) Microscope image of					
	stained cells after extraction of the nucleus, c) Spectra obtained from					
	electrospraying the nucleus and cytoplasm	9				

S1. Experimental section

All experiments were carried out with an orthogonal acceleration time-of-flight mass spectrometer (QTOF Premier, Waters Co., Milford, MA) equipped with a custom built electrospray source. A low noise syringe pump (Physio 22, Harvard Apparatus, Holliston, MA) operating at 300 nL/min was used to pump the electrospray solution, 50% aqueous methanol with 0.1% acetic acid (ν/ν), through a stainless steel emitter. A regulated power supply (PS350, Stanford Research Systems, Sunnyvale, CA) is used to apply ~ 3,100 V to the electrospray emitter to generate a steady electrospray. Laser radiation at 2.94 µm wavelength and 5 ns pulse length was provided by a Nd:YAG laser driven optical parametric oscillator (Opolette 100, Opotek, Carlsbad, CA) and was focused by a planoconvex calcium fluoride lens (Infrared Optical Products, Farmingdale, NY) into a GeO₂ fiber (450 µm core diameter, Infrared Fiber Systems, Inc., Silver Spring, MD). The fiber end used for ablation was etched in a 2% HNO₃ solution to produce a tip of ~15-25 µm. The etched fiber tips were inspected under an optical microscope for sharpness and integrity. The fiber was held by a bare fiber chuck (BFC300, Siskiyou Corporation, Grants Pass, OR) that was attached to a micromanipulator (NMN-21, Narishige, Tokyo, Japan) for accurate and reproducible positioning with respect to the subcellular compartments.

Tungsten microdissecting needles with 1 μ m tip diameter (RS-6065, Roboz Surgical Instrument Co., Gaithersburg, MD) or 5 μ m tip diameter (72-0424, Harvard Apparatus, Holliston, MA) were placed in a microdissecting needle holder (RS6060 or RS6061, Roboz Surgical Instrument Co., Gaithersburg, MD) that was attached to a micromanipulator (MN-151, Narishige, Tokyo, Japan). To visualize the cells during the microdissection, a long distance video microscope with a 7× precision zoom optic (Edmund Optics, Barrington, NJ), a 2× infinity-corrected objective lens (M Plan Apo 2×, Mitutoyo Co., Kanagawa, Japan), and a CCD camera (Marlin F131, Allied Vision Technologies, Stadtroda, Germany) was placed orthogonal to the prepared epidermal tissue. An additional long distance video microscope with a 7× precision zoom optic (Edmund Optics, Barrington, NJ), a 5× infinity-corrected objective lens (M Plan Apo 5×, Mitutoyo Co., Kanagawa, Japan), and a CCD camera (Marlin F131, Allied Vision Technologies, Stadtroda, Germany) was placed orthogonal to the prepared epidermal tissue. An additional long distance video microscope with a 7× precision zoom optic (Edmund Optics, Barrington, NJ), a 5× infinity-corrected objective lens (M Plan Apo 5×, Mitutoyo Co., Kanagawa, Japan), and a CCD camera (Marlin F131, Allied Vision Technologies, Stadtroda, Germany) was placed orthogonal to the prepared epidermal tissue. An additional long distance video microscope with a 7× precision zoom optic (Edmund Optics, Barrington, NJ), a 5× infinity-corrected objective lens (M Plan Apo 5×, Mitutoyo Co., Kanagawa, Japan), and a CCD camera (Marlin F131, Allied Vision Technologies, Stadtroda other precision zoom optic (Edmund Optics, Barrington, NJ), a 5× infinity-corrected objective lens (M Plan Apo 5×, Mitutoyo Co., Kanagawa, Japan), and a CCD camera (Marlin F131, Allied Vision Technologies,

Stadtroda, Germany) was placed at a shallow angle to the sample surface to monitor the distance between the fiber tip and the cell. Additional experimental details are provided in the Supporting Information.

Purple *Allium cepa* (*A. cepa*) bulbs were purchased from a local store in Washington, DC, and stored at 4° C prior to the analysis. A monolayer of the epidermal cells from the *A. cepa* bulb was directly removed from the intact parenchyma tissue and mounted onto a precleaned microscope glass slide for the experiments. Optionally, the removed epidermis was stained to enhance the visibility of the nuclei. In this case, the wet surface of the epidermis was immersed in an aqueous solution of 0.05% toluidine blue water for one minute, rinsed with distilled water, and then mounted onto a precleaned microscope glass slide.

An orthogonal acceleration time-of-flight mass spectrometer (Q-TOF Premier, Waters Co., Milford, MA) with a mass resolution of 8,000 (fwhm) was used to collect and analyse the positive ions produced by LAESI after microdissection. No sample related ions were observed when the laser was off. The electrospray solvent mass spectra were subtracted from the LAESI mass spectra in the MassLynx 4.1 software (Waters Co., Milford, MA). For the quantitative comparison of mass spectra from the nucleus and the cytoplasm, they were normalized by the sum of all ion intensities. EZinfo software (Version 2.0.0.0, Umetrics AB, Sweden) within the MarkerLynx application manager was used to perform orthogonal projections to latent structures discriminant analysis (OPLS-DA) multivariate statistical treatment with Pareto scaling.

ID	m/z _{meas.}	m/z _{calc.}	?m (mDa)	Metabolite	Formula	I _{nuc/cyt}
1	88.0423	88.0399	-0.2	Aminoacrylic acid	$C_3H_5NO_2$ (+H ⁺)	0.3
2	127.0422	127.0508	8.6	Thymine	$C_5H_6N_2O_2$ (+H ⁺)	1.8
3	147.0817	147.0770	-4.7	Glutamine	$C_5H_{10}N_2O_3 (+H^+)$	4.4
4	152.0446	152.0348	-9.8	Nitrobenzaldehyde	$C_9H_{14}NO (+H^+)$	6.6
5	175.1205	175.1195	-1.0	Arginine	$C_6H_{14}N_4O_2$ (+H ⁺)	13.7
6	178.0575	178.0538	-3.7	Alliin	$C_6H_{11}NO_3S (+H^+)$	0.8
7	180.0888	180.0872	-1.6	Galactosamine	$C_6H_{13}NO_5$ (+H ⁺)	1.0
8	198.0981	198.0972	-0.9	Hexose	$C_6H_{12}O_6(+NH_4^+)$	0.6 ^b
	203.0552	203.0532	-2.0		$C_6H_{12}O_6$ (+Na ⁺)	0.8 ^b
	219.0271	219.0271	0.0		$C_6H_{12}O_6$ (+K ⁺)	0.5 ^b
	399.0896	399.0899	0.3		C ₆ H ₁₂ O ₆ (2M+K ⁺)	
9	216.0129	216.0097	-3.2	N-Formyl-L-methionine	$C_6H_{11}NO_3S$ (+K ⁺)	0.4
10	290.0855	290.0785	-7.0	Procyanidin	$C_{30}H_{26}O_{12}(+H^++H^+)$	0.5
11	317.1053	317.1113	6.0	Glutamylphenylalanine	$C_{14}H_{18}N_2O_5$ (+Na ⁺)	0.6
12	325.1154	325.1135	-1.9	Glucosan or dextrin unit	$C_6H_{10}O_5 (2M+H^+)$	2.3
13	343.1250	343.1235	-1.5	Disaccharide (2 hexose units)	C ₁₂ H ₂₂ O ₁₁ (+H ⁺)	1.3
	360.1471	360.1500	2.9		C ₁₂ H ₂₂ O ₁₁ (+NH ₄ ⁺)	
	365.1055	365.1054	-0.1		$C_{12}H_{22}O_{11}$ (+Na ⁺)	
	381.0793	381.0799	0.6		C ₁₂ H ₂₂ O ₁₁ (+K ⁺)	
14	358.1198	358.1226	2.8	Aspartylglycosamine	$C_{12}H_{21}N_3O_8$ (+H ⁺)	0.2
15	362.0968	362.1020	5.2	Tetrasaccharide (4 hexose units)	$C_{24}H_{42}O_{21} (H_2O+K^++H^+)$	2.8
16	443.1128	443.1284	15.6	Pentasaccharide (5 hexose units)	$C_{30}H_{52}O_{26} (H_2O+K^++H^+)$	n/aª
17	543.1440	543.1328	-11.2	Trisaccharide (3 hexose units)	C ₁₈ H ₃₂ O ₁₆ (+K ⁺)	4.8
18	571.2153			Unknown		n/aª

Table S1. Tentative metabolite assignments for a select number of peaks detected from the nucleus and cytoplasm after microdissection. The ID corresponds to the metabolite ID shown in Figure S1. The ratio of the normalized peak intensities in the nucleus and cytoplasm, $I_{nuc/cyt}$, is also given.

^a This ion was not detected in the cell cytoplasm.

^bDifferent ions corresponding to the same metabolite do not necessarily exhibit the same intensity ratios due to differences in the available cationizing reactant concentrations in the different compartments.

Figure S1. Comparison of the normalized intensities of some metabolites detected in the nucleus (black) and cytoplasm (gray). Normalization was performed using the sum of the analyzed ion intensities in the spectra. The metabolite ID corresponds to the tentative metabolite assignments shown in Table S1.

Compartment	m/z _{meas.}	Metabolites	Formula	I _{nuc/cyt}
Nucleus	443.1128	Pentasaccharide (5 hexose units)	$C_{30}H_{52}O_{26} (H_2O+K^++H^+)$	n/aª
Nucleus	362.0968	Tetrasaccharide (4 hexose units)	C ₂₄ H ₄₂ O ₂₁ (H ₂ O+K ⁺ +H ⁺)	2.8
Nucleus	147.0817	Glutamine	$C_5H_{10}N_2O_3(+H^+)$	4.4
Nucleus 175.1205		Arginine	$C_6H_{14}N_4O_2$ (+H ⁺)	13.7
Cytoplasm	203.0552	Hexose	$C_6H_{12}O_6$ (+Na ⁺)	0.8
Cytoplasm	178.0575	Alliin	$C_6H_{11}NO_3S$ (+H ⁺)	0.8
Cytoplasm	358.1198	Aspartylglycosamine	$C_{12}H_{21}N_{3}O_{8}(+H^{+})$	0.2
Cytoplasm	216.0129	N-formyl-L-methionine	$C_6H_{11}NO_3S(+K^+)$	0.4
Cytoplasm	219.0271	Hexose	$C_6H_{12}O_6(+K^+)$	0.5
Cytoplasm	88.0423	Aminoacrylic acid	$C_{3}H_{5}NO_{2}$ (+H ⁺)	0.3

Table S2. Data analysis by OPLS-DA identified metabolites with the most variance between the nucleus and cytoplasm. These metabolites are labeled with $m/z_{meas.}$ in Figure 4.

^a This ion was not detected in the cell cytoplasm.

S2. Organelle extraction and electrospray ionization using nanoelectrospray emitters

Additional experiments were performed using a nanoelectrospray emitter (Picotip, New Objective, Woburn, MA) with a 15 µm inner tip diameter to extract the nucleus or cytoplasm from the epidermal cells. First, the cells were stained with a 1% aqueous solution of methylene blue chloride, which was diluted in 50% methanol solution (v/v). In this case, the wet surface of the epidermis was immersed in the dye solution for one minute, rinsed with distilled water, and then mounted onto a precleaned microscope glass slide. The extraction of the nucleus or cytoplasm was performed under visualization by an upright microscope (BX51, Olympus America Inc., Center Valley, PA) equipped with long working distance objective lenses. The emitter was held by a micromanipulator (MN-151, Narishige, Tokyo, Japan) and used to pierce the cell. The targeted cell contents were extracted into the emitter by capillary action. Subsequently, the tip was connected to an electrospray apparatus and the contents in the emitter were electrosprayed. The electrospray solution (50% methanol/water and 0.1% acetic acid) was pumped through the system at 300 nL/min by a syringe pump (Physio 22, Harvard Apparatus, Holliston, MA) and 1800-2200 V high voltage was applied to the emitter by a power supply (PS350, Stanford Research Systems, Sunnyvale, CA). An orthogonal acceleration time-of-flight mass spectrometer (Q-TOF Premier, Waters Co., Milford, MA) with a mass resolution of 8,000 (fwhm) was used to collect and analyze the positive ions produced from the extracted samples. The electrospray solvent spectra were subtracted from the sample-related spectra in the MassLynx 4.1 software (Waters Co., Milford, MA).

Figure S2. a) Microscope image prior to extraction shows stained *A. cepa* cells with the nuclei clearly visible. The targeted nucleus is emphasized with a black dashed circle. b) After extraction of the nucleus with the emitter all of the surrounding cells remain intact and there is minimal damage to the targeted cell. c) Positive ion electrospray mass spectra in the vicinity of the methylene blue ion from the nucleus (top) and cytoplasm (bottom) are compared. Normalization was performed using the sum of the analyzed ion intensities in the spectra. The inset shows a nucleus captured inside the emitter before being electrosprayed.